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A HIGH-RESOLUTION TARGET-TRACKING CONCEPT
USING SPECTRAL ESTIMATION TECHNIQUES

1. INTRODUCTION

The tracking of targets in the presence of nearby strong interference sources is a problem area of
considerable interest in radar systems, primarily because conventional tracking radars may experience
large errors, track-breaking, or complete disruption. Some early proposed solutions to this protlem
evolved from the growing adaptive array antenna technology of the 1970’s. For example, a paper by
White [1] discusses the high-resolution aspect in considerable detail. He presents the problem of track-
ing radar targets in the low-angle regime where conventional tracking radars encounter difficulty
because of the presence of a strong surface-reflected ray. Starting with a classical maximum-likelihood
analysis of the problem of two closely spaced targets, he develops two techniques which are theoreti-
cally capable of dealing with the multipath problem. A more recent contribution in the multipath area
is the work of Cantrell et al. [2], who proposed a simple, closed form solution for an array divided into
three subapertures. The accuracy of their technique compares favorably with the maximum likelihood
estimate which uses all of the individual elements.

The first extension of fully adaptive arrays to angle estimation in external noise fields is the con-
tribution of Davis et al. [3], who developed an algorithm based on the outputs of adaptively distorted
sum and difference beams. The adaptive beams filter (null) the external noise sources, and distortion
correction is then applied in the resultant monopulse output angle estimate for a selected tracking beam
direction.

In recent years, a closely related new technology which derives largely from modern spectral esti-
mation theory has been emerging, and it appears to offer additional opportunities for achieving
significant improvements in the detection/tracking of closely spaced multiple sources and targets.
Interest is stimulated because of reported resolution capabilities which extend well beyond the conven-
tional windowed Fourier transform. Gabriel [4,5] has emphasized two processing-domain performance
characteristice for these techniques which apply to the tracking problem:

®  “"superresolution” which implies the resolution of two or more sources within the conven-
tional bearnwidth of an RF antenna aperture, and

®  "absence of sidelobes” which implies the resolution of two or more sources of unequal
strengths when those sources are spaced more than a beamwidth apart.

(Quotation marks are used to avoid misinterpretation of the conventional radar system definitions of
resolution and sidelobes.) These characteristics are demonstrated via simulation examples for several
spectral estimation algorithms including linear prediction methods, the maximum likelihood meihod,
and eigenvalue/eigenvector analysis techniques. References 4 and § also address ‘he difficult radar
coherent-source problem area which involves a phase-dependent signal-to-noise ratio (SNR) penalty.

A contribution which proposes both adaptive processing and high-reseclution spectral estimation is
that of Chapman et al. [6], who discusses the mainbeam jamming problem. Two techniques were

Manuscript approved December 13, 1983,
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investigated. First, a linear prediction extrapolation procedure was employed to extend the anparent -
aperture of an antenna array and thereby achieve a narrow notch on the jammer while providing gain in e
the look direction of the target. Second, the maximum likelihood procedure (Section 4.4) was used to

provide adaptive filtering and estimate target angle via beam scan.
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t.;") The remainder of this report is divided into three principal sections. Section 2 discusses the

t.::-.-* overall tracking system concept and references the sections containing technical details, Section 3 con-

N siders several tracking performance examples which are based on computer simulation snapshot daia,
and Section 4 discusses the details of the associated algorithm/processing theory, analysis, and develop-

ment.
2. TRACKING SYSTEM CONCEPT

An all-digital processing system is defined which commences with complex data sampling of the
array element signals (or beam-port signals if it is a beamformer type of antenna). It is assumed that
conventional receiver techniques would be employed prior tc the signal analogue-to-digital (A/D) con-
verters as illustrated in Fig. 1; i.e., the system may include transmit-receive (TR) devices, low-noise RF
amplifiers, local oscillator (LO) mixers, intermediate frequency (IF) amplifiers, and synchronous
baseband detection with in-phase and quadrature (I&Q) video output to sample and hold (S/H) circuits
followed by the A/D converters. Snapshots would nominally occur at the Nyquist sampling rate
corresponding to the video bandwidth, so that a radar-oriented person may view them as range bin time
samplings. For this interim report, actual measured snapshot data were not used in tracking perfor-
mance evaluations. Rather, a snapshot signal model described in Section 4.1 was used to generate the
complex digital signal data via computer simulation.

RF LOCAL OSC.

() IF MIXERS

&
IF LOCAL OSC. MP. AMP./ oA sEBAND
1 Q/ vioeo

181211211’

SAMPLE AND HOLD

A/D CONVERTERS

P Yoy

Fig. 1 — Typical RF receiver techniques associated
with A/D complex-data sampling

Figure 2 shows the system concept for processing the digital signals. Starting on the left-hand
side, the system continuously computes/updates a sample covariance matrix R. A number of tech-
niques are available for computing R, and four of these are described in Section 4.2. Of particular
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CONTROLLER ———"——]OUTPUT DISPLAY

Fig. 2 — Adaptive array tracking system concept

significance is the fact that R may be dimensioned either equal to or less than the number of array ele-
ments; i.e., the model order of the estimate is selectable per subaperture averaging option choice.

Off-line processing on R is then conducted at periodic intervals to estimate the locations and rela-
tive power levels of interference sources via a catalogue of spectral estimation algorithms. Literally
dozens of algorithms are now available in the literature, ranging from fast simple routines [4,7] for
estimating strong sources, to the more sophisticated eigenanalysis routines for estimating weak sources.
Because of the growing interest and superior performance of eigenvalue/eigenvector decomposition
techniques, Sections 4.3 to 4.5 are devoted to a detailed discussion/analysis with pertinent references.
Desirable features of any algorithm are robustness, fast root-finding, and the capability of solving for
relative source strength. This latter feature is important in source classification and crucial for screen-
ing out "false alarms."

Having estimated the locations and relative power levels of interference sources, the central pro-
cessor unit (CPU) then applies these data to the computation of optimized adaptive spatial filter
weights. These may be developed via a number of different schemes, and Section 4.7 discusses two
approaches with an option for "softened" spatial filtering. The question may be raised as to why the
filter weights are not computed/developed directly from the data samples as in a conventional adaptive
array. A number of reasons exist for separating source estimation from filter weight computation.

1. Source estimation often requires flexible subaperture techniques, i.e., a model order
which is less than full aperture. (See Section 4.2.4.)
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Search/irack detection usually demands use of the full aperture at all times because of
SNR and resolution considerations.

It is easier to estimate and implement prewhitening filtering to remove slowly changing
interference sources and colored noise distributions.

It is easier to modify the filtering for purposes other than source cancellation, i.e., to
reduce distortion effects or to introduce time-modulated weights.

One can readily add real-time adaptive filter weight perturbations to permit fast response.
Certain constrained, partially adaptive systems are unable to assign their degrees of free-

dom automatically, for example, a beamspace adaptive antenna system with a low sidelobe
constraint and only a few beams available.

The right-hand side of Fig. 2 shows that the CPU also has control over a fast-memory storage
capability which could be used in several different ways including

dump-storage of a block of contiguous data snapshots;, for example, one may store the
snapshots associated with a particular sample covariance matrix, for later retrieval when
that filter update occurs;

time-gated snapshot storage based on interference source classification, for later selective
retrieval;

time-gated snapshot storage based on target-search considerations; and

"bucket-brigade bumping® snapshot storage to obtain a selected time delay of the
snapshots.

Thus one may select either the current snapshot or a storage snapshot for feeding into the filter weights
which the CPU updates.

Next, the filtered signal output residue is fed into a beamformer which is weighted to produce the
desired search and monopulse track beams for target detection/tracking. Section 4.8 discusses the un-
avoidable problem of target wavefront distortion which can cause serious tracking errors if not dealt
with and points out two distortion correction procedures.

Recognize that Fig. 2 is intended to represent a concept rather than a specific system design. Any
particular system design application would undoubtedly require variants to achieve the most efficient
processor implementation. The concept is summarized in the following five steps:

L.

2

Convert A/D at elements/beam ports.
Compute/update sample covariance matrix R.
e model order selectable (need not be known)
® subaperture technique incorporated

Process R off-line periodically

® by using fast inverse routines to estimate strong sources,
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by using eigenanalysis routines to estimate weak sources,

by rootfinding on optimum weights to pick out source locations;
e then compute source power matrix;
® then screen false alarms.
4. Compute filter weights for full aperture from updated source information.

5.  Apply conventional tracking to the filtered snapshots, incorporating wavefront distortion
correction.

3. TRACK PERFORMANCE EXAMPLES

To demonstrate the concept, a series of simple radar-simulation examples are given in this section
wherein a single target appears in a single range bin per pulse repetition frequency (PRF) period, and
one to several interference sources appear in N adjacent range bins per PRF period. All snapshots were
simulated from the model described in Section 4.1, by using an 8-element linear array with haif-
wavelength spacing as the receive aperture. The examples are identified as follows:

Case C8L6JVC¢B - six sources,

Case C8L1JXX - one source,

Case C8L2J3C - two sources,

Case C8L3J3C - three sources, and

Case C8L3J7B - three sources plus spatial noise.

3.1 Case C8L6JVC¢B - Six Sources

This case was originally designed in January 1981 for an 8-element array for the purpose of stress-
ing spectral estimation algorithms. Figure 3 illustrates its range-azimuth geometry, which consists of a

«
w @
u
2 F &
< s § &
TARGET. o ; Sv §
v, 3dB,—4° © T g <
2 ¢ o o DO
%, ¥ ;7o 8
W) 0
“ty, % i
() A Vg N
loa ,/ : \\
(AN ! N
/’ N L TARGET RANGE
/ ] \
SN : /' \ \\
AR s \ \
\\ \ ] / \
A i 1y \
AN T \‘ 1
|
AAXRXAXK !
ARRAY N SNAPS

(RANGE BINS)

Fig. 3 — Range/azimuth geometry for Case C8L6JVC¢B
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single 3 dB SNR target located at -4° azimuth and appearing in a single range bin per PRF period. Six
interference sources appear in N adjacent range bins per PRF period. Two of these sources are 10 dB 52
SNR, 95% correlated, located at —54° and —42° (0.57 beamwidth apart); and four are noncoherent

sources of —9, 30, 10, and 20 dB SNR, located at 0°, 15°, 22°, and 30° respectively. The correlated

sources, the close spacings, the large dynamic range of source strengths, and the consumption of six

out of seven degrees of freedom causes difficulty for most spectral estimation algorithms, as shown in

Fig. 4. Note in Fig. 4(a) that the conventional beam scan ( /indowed Fourier transform) is hopeless, as

expected, because of its beamwidth and sidelobe limitations. But also note that the SLC (sidelobe can-

celler algorithm similar to least-squares linear prediction) has failed to resolve the highly correlated

sources and the two weaker noncoherent sources located at 0° and 22°. In Fig. 4(b) the maximum
likelihood method (MLM) algorithm also performs poorly, but the multiple signal classification

(MUSIC) algorithm (Section 4.4.2) was able to locate all six sources correctly via its noise eigenvectors.

The point to be made is that this is not an easy case to resolve.

This first case will be presented in greater walk-through detail than the others to familiarize the

reader with the sequence. Starting with the computation of fl the simple block averaging method (Sec-
tion 4.2.1) was used with N = 256 snapshots. Further, the filter weight update period was selected to
coincide, so that a new copy of R was fetched for processing at the end of each 256 snapshots period.
Two spectral estimation algorithms were applied to R: the SLC algorithm and the principal eigenvector
Gram-Schmidt (PEGS) algorithm (Section 4.4.3). The SLC aigorithm develops the Wiener optimum
weight [4,5], per Eq. (25) in Section 4.4.1, W, = p.R' S* where S**= [0, 0, 0, ..., 1]. Rootfinding
(Section 4. 6) on the first four updates of W, results in the Z-plane roots plots shown m fig. 5(a). Note
that only three roots are close to the unit circle and would be culled, leading then to the corresponding
digital power/location estimates shown in Fig. 5(b). Performance comments here are the same as those
associated with Fig. 4(a); i.c., the SLC algorithm has failed to resolve the highly correlated sources and
the two weaker noncoherent sources located at 0° and 22°.

The PEGS eigenanalysis algorithm applied to the same four R update trials results in the roots
and digital power/location estimates shown in Fig. 6. Note that the estimates are now reasonably close
to the truth given in Fig. 3, with the greatest variance exhibited by the highly correlated sources and
the weak —9 dB source.

After the source data are estimated, the adaptive spatial filter weights are updated accordingiy
(Section 4.7), and we can then compute the associated spatial filter insertion loss. Figure 7 illustrates
the results for the four trials in this example, computed from Eq. (50) for « = 1. Insertion loss plots
are very helpful for visualizing certain target/interference-source relationships.

®  Detection/tracking is most favorable in those regions where the insertion loss is low.

® Insertion loss cost against a desired target increases rapidly as the target gets close to a
strong interference source.

e If the target strength is sufficient to overcome the insertion loss, then tracking within a
beamwidth of a strong interference source should be feasible.

® Insertion loss and tracking beam distortion are related.
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Section 4.8 discusses the formation of the tracking beams and their resultant equivalent distortion
due to the spatial filtering. Figure 8 summarizes the particular distortions associated with this case;
these distortions are computed for tracking beams with a boresight pointing angle of 0°. The reader will
benefit from comparing these patterns against the sidelobe source case of Fig. 10. Figure 8(a) shows
the distorted adapted left and right tracking beams, where the right beam is particularly adversely
affected because of its overlap with the three strong sources located at 15, 22, and 30°. Figure 8(b)
shows the resultant, distorted, adapted sum and difference tracking beams (a plot of W, and W, as
given in Eqs. (65, 66)), where we note that the sum beam has been shoved over to the left and the
difference beam has almost lost its right positive lobe. Figure 8(c) is the associated spatial filter inser-
tion loss over the tracking beam region, an expanded portion of Fig. 7. And, Fig. 8(d) illustrates the
associated track angle estimate (A/Z) distortion, computed from Eqs. (64, 65, 66). Note the cusp
which occurs at the location of the strong 30 dB source. This is undesirable, of course, since it could
result in ambiguous track angle estimates in that vicinity. However, the insertion loss plot tells us that
it would be virtually impossible to see any target return from that vicinity and, therefore, one can disre-
gard it.

A verification data point is included for our true target location of —4°. It was obtained from
monopulse track angle estimates averaged over 16 trials. Figure 9 shows a representative plot of track-
ing angle estimate vs time in PRF periods, where an averaging factor of 10 is incorporated into the plot
outputs to reduce the dispersion of the plot and to keep the various curves separated reasonably well.
For example, each track angle estimate plot point is an average of the previous 10 monopulse track
angle estimates computed for the range-gated target pulses. The + and — symbols represent L and A
beam output samplings just prior to the target pulse. These samplings verify that the interference
sources have been attenuated down to receiver noise level at the output; i.e., they should merge into
random receiver noise with a mean of 0 dB.
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3.2 Case C8L1JXX - One Source ' o .

r
R

These cases were designed to demonstrate how the track estimate. dlstomon is affected by the
position of; the tracking beams with respect to the interference sourcé. A single 7 dB SNR target
appears in a single range bin per PRF period and is located within 1 beamwndth of boresight. Table 1
contains thé case identification numbers corresponding to the locations of a single 10 dB SNR interfer-
ence source-which appears in all range bins per PRF period. The tracking beams of our 8 element array
have a bores1ght pomtmg angle of 0°, and a umform mummanon beamwldth B = 14.5°.

Table 1 ~ Case Identification

Numbers
Case. Source Location
Number 0 @/B)
CSLIJ8X | =30° | —2.0
CBLUI6X | —22° | —1.5

C8L1J4X | —14.5° -1.0
C8L1J3X | —-10.81° | —0.75
C8L1J2X | - 7.2° -0.50
C8L1J¢X 0° 0

The simple block averaging method was used to compute R, with N = 480 snapshots, and the
PEGS eigenanalysis algorithm was applied. Estimating a single source is almost trivial, and, as a result,
showing the roots or the digital power/location estimates is not necessary.
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One of the general characteristics demonstrated by this series of simulation tracking runs was
that tracking beam distortion was rather negligible so long as the interference source remained in the
sidelobe regions of the tracking beams, which is beyond approximately +22° for our example. Figure
10 illustrates this point for a source location of —2.0 beamwidths. Thus, distortion builds up only when
the tracking main beams begin to overlap a strong source. Figure 11 illustrates a typical case where the
interference source is located 0.75 beamwidth from boresight. Note the severe distortion of the left
beam in Fig. 11(a) and the resultant distortion of the sum and difference beams in Fig. 11(b). A
severe cusp occurs in the track estimate distortion of Fig. 11(d) at the position of the interference
source, and this could lead to ambiguous track angle estimates in that vicinity. One solution to this
ambiguity is to simply increase the filter insertion loss (Fig. 11(c)) where needed (similar to adding a
synthetic interference source) so as to remove any possibility of a target return getting through on the
wrong side. Figure 11(d) includes six verification data points for true target locations of —1.0, —0.5,
-0.25, 0, 4+0.5, and +1.0 beamwidth. These points were obtained from monopulse track angle esti-
mates averaged over 60 trials. Note that satisfactory tracking was obtained within 0.25 beamwidth of
the interference source.

Figure 12 illustrates maximum distortion ambiguity which occurs for the special case when track-
ing beam boresight is directly steered onto a strong source. Tracking targets under this condition is not
possible, and it obviously should be avoided.

3.3 Case C8L2J3C - Two Sources

The two-source cases were designed on the basis of results from the single source cases to demon-
strate how the track estimate distortion is affected by the position of the tracking beams with respect to
the two sources, particularly when the tracking main beams overlap the sources. The example chosen
for presentation is like a superposition of Case numbers C8L1J6X and C8L1J3X from Table 1; i.e.,
there are two 10 dB SNR sources located at —1.5 and —0.75 beamwidths from tracking beam boresight.

Again, the processing involved simple block averaging to update fl, with N = 480 snapshots; the
PEGS eigenanalysis algorithm was applied, and the estimation of the two sources was easy because of
their relatively large separation of 0.75 beamwidth.

Figure 13, which illustrates the resulting adaptive spatial filter functions, may be directly com-
pared to Fig. 11 because of the identical location of the close source at -0.75 beamwidth. Note that
there is some further degradation in all four plots on the left-hand side because of the presence of the
second source, but that performance on the useful right-hand side has not been degraded. In fact, the
track estimate distortion curve in Fig. 13(d) is now greatly improved because the possibility for ambi-
guity in the vicinity of the cusp has been removed by the insertion loss notch. Five verification data
points are included for true target locations of —0.5, —0.25, 0, +0.5, and +1.0 beamwidth, averaged
over 60 monopulse estimate trials. Again, satisfactory tracking was obtained within 0.25 beamwidth of
the close source, which means that the target plus both interference sources were located within a
beamwidth.

3.4 Case C8L3J3C - Three Sources

This case was designed by adding a third source between the above two sources; i.e., there are
now three 10 dB SNR sources located at —1.5, —1.12, and --0.75 beamwidths from tracking beam
boresight at 0°. The close spacing of 0.375 beamwidth between the three sources makes it a difficult
case to estimate accurately; as a result, more processing results will be givin for this example. Simple
block averaging was again employed to update R every 480 snapshots, and the SLC algorithm (Eq.
(25)) and PEGS eigenanalysis algorithm were both applied.
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Rootfinding on the first eight updates of W, from the SLC algorithm resulted in the Z-plane roots
shown in Fig. 14(a). Note that only two roots are close to the unit circle, and these roots correspond to
the two outer sources located at —22° and —10.8°. The SLC algorithm completely fails to resolve the
third middle source.

By contrast, the PEGS eigenanalysis algorithm applied to the same eight R updates results in the
roots shown plotted in Fig. 14(b). Here, all three sources are readily resolved, and their roots hug the
unit circle closely. Even the off-circle roots show considerably less scatter. The corresponding digital
plot of estimated relative power vs estimated source location is shown in Fig. 15(a), where we note an
accurate estimate of the power level of the third middle source in addition to its location. Figure 15(b)
then illustrates the resulting filter insertion loss, computed for a = 1.

Figure 16 shows a summary of the four adaptive spatial filter functions for tracking. In compari-
son to Figs. 11 and 13, note that only the left-hand side of the four plots shows any significant changes,
and that the right-hand side of Fig. 16(d) is well protected from any cusp ambiguity because of the
deep insertion loss notch extending over the entire interference source region. Five verification data
points are included for true target locations of —0.5, —0.25, 0, +0.5, and +1.0 beamwidth, averaged
over 60 monopulse estimate trials. A remarkable feature here is that satisfactory tracking has been
obtained even with three strong interference sources located within a beamwidth of the target, i.e., the
verification data point for the true target location of —0.5 beamwidth.

As an additional indicator of tracking results for this example, Fig. 17 illustrates a typical plot of
track angle estimate vs time in PRF periods. An averaging factor of 10 is incorporated into the plot
outputs to reduce the dispersion of the plot points and to keep the various curves separated reasonably
well. For example, each track angle estimate plot point is an average of the previous 10 monopulse
track angle estimates computed for the range-gated target pulses. The + and — symbols represent
and A beam output samplings just prior to the target pulse, and they serve to verify that the interfer-
ence sources have been attenuated down to receiver noise level at the output; i.e., they should merge
into random receiver noise with a mean of 0 dB.

3.5 Case C8L3J7B - Three Sources plus Spatial Noise

This case is included to illustrate the performance of the PEGS eigenanalysis algorithm when dis-
tributed background spatial noise (colored noise) is added to the previous three-source situation. The
spatial noise in the simulation consisted of 35 random noise generators of —7 dB SNR level distributed
uniformly in sin @ space from —60° <o 0°. Figure 18 shows the spatial spectrum estimates and the asso-
ciated filter insertion loss obtained for the spatial noise alone, for eight trials of 480 snapshots each.
Note that the PEGS algorithm estimates the distributed noise sources quite well by using five roots
(degrees of freedom) to cover that extensive spatial region; i.e., it estimates on the basis of its 8-
element array-aperture resolution capability. The insertion loss plot then provides the "envelope” out-
line of the spatial block of background noise, somewhat similar to an upside-down version of a win-
dowed Fourier transform. This information could be used to provide prewhitening spatial filtering of
the background noise.

The addition of the three 10 dB sources at —10.8°, —16.3°, and —22° then results in the overall
estimates shown in Fig. 19. Note that the PEGS algorithm continues to use only five roots in estimat-
ing the combined situation, but we can readily discern the superposition of the two sets of sources.
Some detail is lost since the spatial width of the background noise has shrunk slightly, and the three 10
dB sources are estimated as two sources (Fig. 19(a)). This latter result occurs because the background
noise degrades the relative SNR of the three sources. Overall tracking distortion effects did not greatly
differ from Fig. 16.
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4. ALGORITHM THEORY/ANALYSIS/DEVELOPMENT

A considerable number of algorithms in the literature could be applied to this problem area, but
attention herein is focused primarily on eigenvalue/eigenvector decomposition techniques, sometimes
referred to as principal eigenvector methods or singular value decomposition techniques. The reasons
for preferring this class of algorithm is that these techniques demonstrate superior performance in the
form of robustness against noise perturbations, maximum detection sensitivity, and maximum informa-
tion potential. Adequate references are given below so that the reader may gain a better perspective of
this rather broad technical area and may also consult more detailed presentations of the basic
theory/analysis.

Computational load is generally higher with these techniques because of the
eigenvalue/eigenvector evaluations involved. The particular computer code used by the author is a
Fortran IV program called CMPLXELG developed originally at the University of Wisconsin Computer
Center [8]. Offsetting the increased computation, however, is the ever-increasing speed and capacity of
modern CPU machines. In addition, rather efficient eigenvalue/eigenvector computation methods
[9,10] exist which may be pursued if needed, and the impact of very large scale integrated circuits
(VLSI) will undoubtedly soon be felt in modern signal processing.

4.1 Snapshot Signal Model

Adaptive response to a particular signal environment is based on algorithm-controlled processing
of the sampled signals from multiple sensors. In this section we address the sampled signals by
developing in detail a snapshot signal model which forms the basis for all computer simulations used in
this report.

Consider a simple linear array of K elements as shown in Fig. 20. The received signal samples are
correlated in both space and time, giving rise to a two-dimensional data problem, but we convert this to
spatial domain only by assuming that narrow-band filtering precedes our spatial domain processing.
Bandwidth can be handled when necessary via a spectral line approach [11] or tapped delay lines at each
element {12], but we did not consider such extra complication essential to the basic purposes of this
analysis. Thus, the postulated signal environment on any given observation consisis of I narrow-band
plane waves arriving from distinct directions 8,. The RF phase at the kth antenna eiement as a result
of the ith source would be the product w, X;, where X, is the location of the element phase center with
respect to the midpoint of the array in wavelengths, and w, is defined as

w;= 27 sin 0,. 0}

This notation is deliberately chosen to have the spatial domain dual of sampling in the time domain, so
that the reader may readily relate to the more familiar spectral analysis variables. Sin 6, is the dual of a
sinusoid frequency f;, and the X, locations are the dual of time sampling instants #. Note that if our
elements are equally spaced by a distance d, then X, may be written,

o[-

where A is the common RF wavelength. The ratio d/A becomes the dual of the sampling time T with
the cut-off frequency equal to the reciprocal [13].

K+1
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Fig. 20 — Geometry of linear array and signal wavefront

The complex amplitude of the /th source at the array midpoint phase center is p,, such that we can
now express the ath time-sampled signal at the kth element as,

E(n) = n,(n) + ;’;p,(n)g,‘(a,) exp oo X,) @)
jou .

where g,(9,) is the element pattern response in the direction 8,, and 7, (n) is the nth sample from the
kth element independent Gaussian receiver noise. (The receiver noise component is assumed to be a
random process with respect to both the time index » and the element index k) Equation (3) permits
us to construct a convenient column vector of observed data in the form,

E(n) = Vp(n) + n(n) 4)
[(Ey(n) 7] EREN o v | [y (n) ]
Ex(n) via | vy | | v [ p1(n) 7] n2(n)
Es3(n) vis | vy | I v pa(n) n3(n)
- . ' . l RS I . . +
[ |
I | .
LPI(") .

| Ex(n) | | vix | vax | | v | | nx(n)

where V is a K X I matrix containing a column vector v, for each of the / source directions; i.e.,
Vi ™ gk(o,) exp (leXk)' Q)
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Note that Eq. (4) separates out the basic variables of source direction in the direction matrix V, source
baseband signal in the column vector p(n), and element receiver channel noise in the column vector
n(n). The vector E(n) is defined as the nth snapshot, i.e., a simultaneous signal sampling across all
K-array elements at the nth time instant. These snapshots would nominally occur at the Nyquist sam-
pling rate corresponding to our receiver bandwidth [13), so that a radar-oriented person may view them
as range bin time samplings. However, for source estimation purposes, they need not necessarily be
chosen from contiguous range bins and, in fact, for most applications it would be highly desirable to
selectively time gate the snapshots used for source estimation. For this simple analysis, let us postulate
that the snapshots are gated at more or less arbitrary instants of time.

Over typical processing intervals, the directions of arrival will not change significantly, so that V is
a slowly changing matrix. In contrast, the signals p,(n) will generally vary rapidly with time, often
unpredictably, such that we must work with their statistical descriptions. It is assumed that the signals

are uncorrelated with receiver noise. Proceeding then from Eq. (4), we can obtain the covariance
matrix R via application of the expected value operator &, or ensemble average,

R = Z[E()E*(n)] (6)

R=VPV*+N @)

where N = ZIn(n)n(n)*], P = Z[p(n)p(n)*1, * is the complex conjugate, and ¢ is the transpose. N
is a simple diagonal matrix consisting of the receiver channe! noise power levels. The diagonal ele-
ments of P represent the ensemble average power levels of the various signal sources, and off-diagonal
elements can be nonzero if any correlation exists between the sources. Note that correlated far-field
signals can easily arise if significant specular reflection or diffraction multipath is present.

4.2 Sample Covariance Matrix (SCM) Techniques
Antenna array snapshots are the fundamental input data to our processor, whether they are real
measurements or computer simulated via the snapshot signal model developed in the previous section.

They are generally used to computer update one of the following vectors or matrices kept in computer
storage:

®  Optimum weight vector. (Example—the Howells-Applebaum algorithm [14])
®  Optimum weight matrix. (Example—the Gram-Schmidt algorithm [15])

e  Sample covariance matrix (SCM). (To be discussed in this section)

®  The Inverse of an SCM. (Example—Shapard et al. in Ref. 12)

This section addresses the SCM in some detail and, in particular, describes four different techniques
that have been used in adaptive array processing:

1. simple block averaging,
2. time decay averaging,
3. sliding-window averaging, and

4.  forward-backward subaperture averaging.
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The SCM may be viewed as a repository of information gathered by the sampling antenna array, in
which the individual covariance terms are estimates or averages derived from a finite number of data
samples. In accordance with basic statistical theory [16), the accuracy of the covariance estimates
improves as the number of data samples increases.

4.2.1 Simple Block Averaging

This is an SCM average taken over N snapshots, and may be expressed in the form,

k-4 fi (E(n)E(m) *1. @®

Characteristics: storage is required for the accumulating SCM, but not for the data snapshots; data,
either before or after the block of N snapshots, are obviously not included; the value of N chosen must
be large enough to obtain satisfactory estimates of the desired processing output quantities; as each
block of N snapshots is completed, R is passed on for further algorithm processing and a new SCM
accumulation commences; the method works well for signal environments whose statistics change
slowly and are satisfactorily integrated per choice of N.

4.2.2 Time Decay Averaging

This includes all previous data in the SCM average, but gives ever-decreasing weight to past data;
i.e., it applies exponential time decay or "forgetting " of past data. Such decay averaging is the digital
recursive equivalent of analogue fliter integrator circuits. For example, the équivalent of a simple

single-pole RC analogue integrator filter [17] may be expressed in the recursive backward-difference
form,

R(n) = [—l—] lﬁ(n -0+ L EmEMm* )
41 T

where R(n ~ 1) is the previous stored SCM and  is a selectable integration time constant. Charac-
teristics: storage is required for the previous SCM, but not for the data snapshots; all previous data are
included, but with exponential time decay applied to the older data; the value of r must be chosen large
enough to obtain satisfactory integration; R(n — 1) is continuously available regardless of the value of
n; i.e., it is always current; the method works well for signal environments whose statistics change

slowly, but may not be suitable for abrupt bursts of signal because of the inherently long memory
effect.

4.2.3 Sliding-Window Averaging
This is an SCM average taken over N snapshots, but here a window continually moves with the

data in a "bumping” operation. A block of computer memory must be reserved for storage of the N
previous snapshots,

E(n—-N)

(10)
E(n-2)
E(n-1)
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'When the currcm. nth snapshot comes in, the entire data stack is bumped up by 1 such that the top
oldest” snapshot is bumped off the stack. In this method, one simply keeps the snapshot data stack
current anc¢ computes the SCM only when needed,

. ] (=N+D)
R =" 3 [EWDEM*). ()
f=n

Characteristics: storage is required for N data snapshots, but not for the SCM; after bumping off of the
memory stack, old data is completely discarded; the value of N must be chosen large enough to obtain
satisfactory integration; the SCM is computed only when needed; the method is well suited to signal
environments whose statistics change rapidly or abruptly because of the finite-memory stategy and con-
tinuously updated snapshot data stack.

4.2.4 Forward-Backward Subaperture Averaging

This is an excellent technique for increasing the effective averaging of our SCM when needed,
and it may readily be impiemented if the antenna array elements are identical and equally spaced; Fig-
ure 21 illustrates this technique. We form a reduced dimension subaperture of L elements, where L
must be less than the total number of array elements K. Starting from the left-hand side, the subaper-
ture samples its first snapshct as elements 1 through L, then bumps to the right by 1 and samples its
second snapshot as elements 2 through (L + 1), then bumps to the right by 1 and samples its third
snapshot as elements 3 through (L + 2), etc. After bumping across to the Kth element, we will have
accumulated (K — L + 1) subaperture snapshots from one overall array data snapshot, such that we
can increase our SCM averaging by that same factor. This subaperture motion from left to right pro-
duces what is generally termed "forward averaging." The technique may be applied to any SCM
method. For example, the simple block averaging of Eq. (8) becomes
1 N (K—L+1

“"NK-L+D § ,§

where E(n,1)! = [E/(n), E;;1(n), ..., E4z_1(n)] and R, is the new reduced L x L dimension SCM.
Note that E(n,i/) may be expressed as the matrix product,

E(n,i) = LE(n) (13)

o )
R, [E(nDE(n,i)*'] (12)

where I, is a special L X K rectangular sampling matrix in which the i index denotes the first column
where the identity matrix I begins. For example, the I, matrix for L = 3, K = 6, and i = 2 would be,

I,-[0]1}0]

010000
I,= 001000
000100

An I, matrix may be used to reduce the number of computations by multiplying the SCM of Eq. (8) to
obtain

. (14)

1 (K—~L+1)
IS K-L+1)

Equations (15) and (12) give identical results, and both are mathematical expressions of the additional
spatial averaging or "smoothing" that is obtained via the moving subaperture technique.

R (1,RI/]. (15)

Jum

Furthermore, the averaging can be doubled again by reversing our subaperture at the right-hand
side and bumping across to the left-hand side in similar fashion, but it requires conjugating the subaper-
ture snapshots. This subaperture motion from right to left produces what is generally termed
*backward-averaging." The reader can verify that the resulting SCM will be the conjugate transpose of
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Fig. 21 — Forward-backward shift movement for a reduced dimen-
sion sampling subaperture where L = 4, along a linear antenna array
of K = 15 elemeants

R s, and that we can combine the two into a final forward-backward average SCM which is denoted as
the reduced L x L matrix R

iﬂ- ‘;- [ﬁ,+ﬁ,”]. (16)

Note that R » is a symmetric matrix, but is generally not Toeplitz. References 7, 18, 19 are recom-
mended for further detailed discussion of the technique.

Although forward-backward subaperture averaging is a very simple concept, it usually produces
remarkable improvements in output estimates and, in addition, becomes crucial to processing in the fol-
lowing situations:

® When only a few data snapshots are available per SCM computation. Note that the
method can be used even under the extreme condition of only a single snapshot.

®  When significant coherence exists between spatial sources as, for example, in multipath
situations invoiving a specular reflection. For this particular condition, the fields arriving
at the aperture are nonstationary in space and the SCM is not Toeplitz {1,5,19].

A caveat concerning this averaging technique is that, as the dimension L of the subaperture
becomes smaller, the subaperture antenna gain, resolution, and degrees of freedom decrease. Thus,
the advantage of increased averaging must always be balanced against these factors, and it is usually
prudent to process with as large a subaperture dimension as possible.

4.3 Eigenvalue/Elgenvector Decomposition

When a signal is known to consist of pure sinusoids in white noise, an appropriate procedure to
find the unknown frequencies and powers is the Pisarenko spectral-decomposition procedure (20].
Although Pisarenko’s method per se has not found widespread use, it has provided a fundamental
eigenanalysis basis for several closely related techniques which have demonstrated excellent perfor-
mance. Among these are the algorithms described by Reddi [21], the MUSIC algorithm of Schmidt
[22], the work of Bienvenu and Kopp [23], the singular value decomposition (or principal eigenvector)
methods of Kumaresan and Tufts [24,25),the eigenassisted method of Evans et al. [19], and the alge-
braic approach of Bronez and Cadzow [26].

A key principle in all of these techniques is the geometric vector space relationships between the
spatial source vectors and the eigenvectors of the sample covariance matrix; so we begin our discussion
on this point. From the theory of matrices, we know that a positive definite Hermitian matrix such as
R of Eq. (7) can be diagonalized by a nonsingular orthonormal modal matrix transformation which shall
be defined as the matrix Q. Furthermore, we know that the resulting diagonal components are the
eigenvalues of matrix R. In accordance with the usual eigenvalue problem statements,
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IR — B3| =0and Re, = 87, a7

the 87 are the eigenvalues (real positive numbers) of R, I is the identity matrix, and e, are the associ-
ated eigenvectors. These eigenvectors, which are normalized to unit Hermitian length and are orthogo-
nal to one another, make up the columns of the Q matrix,

€n
€n
(I | €3
Q=le, e; ¢; --- ex] wheree,=| - |. (18)
[ ]
éx
Diagonalization of R by the Q matrix transformation per Eq. (17) may be written,
gt 0 0
o B} O
o o B}
[Q*'RQ] = ,28”] - , (19)
{ . .. Bt

where 8, is the Kronecker delta symbol. One can readily show a construction of R from its orthonor-
mal components,

R= Qlﬂ,’&u]Q" - i ﬁ}ekek . (20)
k=

Next, we introduce the term "principal eigenvector" (PE) to mean those eigenvectors which
correspond to the unique eigenvalues generated by the spatial source distribution; and the term "noise
eigenvector” to mean those eigenvectors which correspond to the small noise eigenvalues generated by
the receiver channel noise in Eq. (7). Under ideal conditions, the noise eigenvalues are all identical
and equal to receiver channel noise power level 82, such that we can factor Eq. (20) to emphasize the
PE,

R=- i (87 — BDeje,* + B @1
e

where ¢ is the number of PE. Comparing Eq. (21) with Eq. (7) we note that the noise diagonal
matrices are equal; i.e.,

Bl =N (22)
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E;

such that one may equate the source direction vectors with the PE,
l 1
VPV*' = 2; AR 2‘1 B - BDee,™ (23)
- {=-

where the |p;|? represents the expected power levels of uncorrelated sources. Equation (23) embodies
the key principle thr. the PE are linear combinations of the source direction vectors, and vice-versa. In
geomietrical language, the v, define an / dimensional source vector space, and the principal e, span that
same vector space. Furthermore, since the noise eigenvectors are always orthogona! to the PE, then it
follows that the noise eigenvectors must occupy a subspace which is orthogonal to the source vector
space. To put it another way, if the noise eigenvectors are viewed as antenna array element weights,
then they should have pattern nulls at source direction angles because of their orthogonality. Despite
the fact that Eq. (23) is based on ideal assumptions, it turns out to be a valuable concept for formulat-
ing algorithms, perhaps because it is inherently a noise-subtracted relationship, and the estimates of the
PE are rather robust.

When working with finite sets of data snapshots which are not ideal, a nontrivial problem area
arises in determining which eigenvectors to designate as principal, and which ones result from noise.
This important problem will be addressed after discussing the associated algorithms.

4.4 Eigenanalysis of Three Algorithms

Eigenvalue/eigenvector decomposition is now applied to three different spatial spectrum estima-
tion algorithms to develop the particular algorithm which was chosen for processing sample covariance
matrix data. Resultant source information derived from these algorithms directly determines the adap-
tive spatial filtering applied prior to target tracking. These algorithms are

e  the MLM (Maximum Likelihood Method),

®  the MUSIC (Multiple Signal Classification), and

e the PEGS (Principal Eigenvector Gram-Schmidt).
Since these algorithms are dealt with in a very abbreviated manner in this report, the reader is
encouraged to consult the references given for a better description and understanding of the techniques
involved.
4.4.1 The MLM (Maximum Likelihood Method)

The maximum likelihood spectral estimate is defined as a filter designed to pass the power in a

narrow band about the signal frequency of interest and to minimize or reject all other frequency com-
ponents in an optimal manner {4,27,28]. This is identical to the use of a zero-order mainbeam direc-

tional gain constraint in adaptive arrays [29,30], where the spatial spectrum would be estimated by the
output residual power P, from the optimized adapted array weights,

P,(9) = W,*'RW,. (24)
Where W, is the optimum adaptive Wiener filter weight, and
W, = uR7!S* (25)

where S*is the usual mainbeam weight vector for steering angle 8, and u is a complex number. Under
the zero-order gain constraint, we require S'W, = 1, whereupon u becomes

n=[S'R7IS*]!, (26)
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Substituting u and W, into Eq. (24) results in

S'RIS*

Upon sweeping the steering vector S* for a given covariance matrix inverse, P,(8) estimates the spatial
spectrum.

Py(6) = [—1—] (27)

In terms of eigenvalue/eigenvector decomposition, we can take the inverse of Eq. (19) and
express R~! in the form,
) K [1
R!=Q [—'L QY= —] e,e.*. (28)
87| & B ™

Here, we see that this older algorithm simply uses all of the eigenvalues/eigenvectors. One advantage
in this decomposition is that Eq. (28) can be substituted into Eq. (27) to form a simple summation of
eigenvector beams referenced to the receiver noise power level,

[ P,(9) 1

7 ] - 2
Ao é [—Z—E—] g2(0)

where g,(9) = S'ek. This permits an insight into the peak values which occur at the nulls of the noise
eigenvector beams; i.e., we get an evaluation of relative source power level if the source location is
resolved.

(29)

4.4.2 The MUSIC (Multiple Signal Classification)

This algorithm was suggested by Schmidt [22] to provide asymptotically unbiased estimates of the
number of signal sources, directions of arrival, strengths and cross correlations among the directional
waveforms, polarizations, and strength of noise/interference. His geometrical vector space description
and interpretation is clearly presented and was used as the basis for Section 4.3 of this report. Essen-
tially, this MUSIC algorithm selects and uses only the noise eigenvectors to solve for the directions of
arrival. This is tantamount to approximating R~! in Eq. (27) by the noise eigenvectors only; i.e.,

X -
let R_l = 2 [Lz] e,e, M (30)
l=g+1 {

where ¢ is the number of principal eigenvectors. The same indexing would apply as noise eigenvector
beams in Eq. (29), where we note that the ratio of eigenvalues would now become unity (or close to
it).

This algorithm does indeed produce very large peaks in P,(8) for good covariance matrix esti-
mates, because of the aforementioned orthogonality of the noise eigenvectors to the source vector
space. Its performance is usually far superior to the older MLM algorithm in resolving closely spaced
source directions. In addition, Schmidt points out that once the directions of arrival have been found,
the direction matrix V, in Eq. (4) and (7) becomes available and may be used to compute the source
power matrix P. We form the special matrix U,
where

U= [VoV]-ly e 31
and
UVPV*U* = P,

33

-

[
Lo
P
I
Lowed

MR AR

ayype

N LTt



WILLIAM F. GABRIEL

If the matrix U exists or can be closely approximated, then we can apply it to the noise-subtracted —
covariance matrix of Eq. (7) to solve for P; i.e., e

P = U[R - N]U* (32)

—

n'm mnn2 - n'm

' P22 0 P2

N/ Y AL Y

Note that the diagonal elements of P represent power estimates of the sources, and that the nonzero
off-diagonal elements represent estimates of the correlations existing between partially coherent
sources.

The ability to solve for the power estimates is of great importance in distinguishing "false alarms”
and in selecting the sources of interest. We recommend Refs. 19, 25, and 26 which are either related
to or give a comparative analysis of the MUSIC algorithm.

4.4.3 The PEGS (Principal Eigenvector Gram-Schmidt)

Several éigenvalue/eigenvector decomposition techniques described in Refs. 19, 21, 25, and 26
are based on the principal eigenvectors (PE) together with some type of constraint imposed on the
optimum weight vector.

This subgroup of PE methods is of interest in the current work because of their generally superior
performance characteristics. An intuitive reasoning behind their use is that the estimates of the PE are
robust; i.e., they tend to remain relatively stable from one data record to the next, whereas the noise
eigenvectors tend to fluctuate because of noise perturbations. In addition, the PE methods are
inherently a noise subtraction technique, similar to noise power cancellation algorithms which attempt
to remove the noise bias term that appears along the main diagonal of the covariance matrix. Direct
application of such reasoning is illustrated by the eigenassisted autoregressive (EAR) technique
described in Ref. 19.

Let us begin development of our PEGS algorithm by decomposing the inverse of the covariance
matrix as given in Eq. (28), normalized by receiver noise power,

a & Bi=Bi)l. . .
o= - [ e
2_ Q2
-1 'g lﬁ‘—p-‘,fl] e, (33)
Substituting Eq. (33) into Eq. (25) results in the optimum Wiener weight,
W o=t [I_ . [.&2_:3_3] ee ot]su
Tl P 1 T R

Y
=-ulse - 'i [.E'_mz_ﬁ"]ale‘] 34)
34
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where
a; = e*S*, | o
p'=p/B3, and
S§* = a quiescent array weight vector.
In the limit of noise-free data, Eq. (34) is suggestive of a simple Gram-Schmidt vector subtraction
from S* in which we would form an optimum weight that would be orthogonal to the PE and, there-

fore, orthogonal to the source direction vectors per Eq. (23). Thus, let us formulate such a PEGS algo-
rithm by defining the optimum weight W, from Eq. (34) as,

W,-S’— ﬁa,e, (35)
o

where
;= & .S
W, possesses the necessary orthogonality to noise-free source direction vectors,
<W, v>=0 (36)
and may readily incorporate the option of unit Hermitian length if desired, '
W 2=1. G7)
The PEGS algorithm as applied in this report used an end-element weighting for S* i.e.,

S*=[00,...,0 1) (38)

4.5 Culling Principal Eigenvalues

The number of principal eigenvalues is usually directly related to the number of sources which, in
practice, are not known and must be estimated. One of the early estimation techniques which has often
been used is the AIC (Akaike information criterion) [31,32). This criterion has been successfully
applied to many model identification problems in engineering and statistics, including the well known
problem of determining the order of an autoregressive (AR) process [32]. Recent work reported by
Wax and Kailath [33] presents a new approach, based on the AIC, which eliminates the need for any
subjective judgment in the decision process; i.e., the procedure does not require any subjectively chosen
threshold. This new approach was implemented during the current investigation and was found to be
very effective for most of the examples tested. In addition to the Wax-Kailath AIC approach, we also
used a second effective technique which is based on the following three processing operations:

®  an initial decreasing-magnitude sort,

®  culling per coarse magnitude threshold, and

®  culling per sensitive threshold based on a quadratic curvefit predictor.
To explain these operations effectively, a typical example is analyzed.

Case C8L1J1TAG consisted of an 8-element linear array with elements spaced half-wavelength,
receiving signal on each snapshot from a 10 dB SNR source located at 0° and signal pulsed on every
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64th snapshot from a 7 dB SNR source located at 6°, 480 snapshots of data used to form the: sample -
covariance matrix, and a receiver noise power level of 17.64. Thus, the initial constants were K

K = 8 (number of array elements),
N = 480 (number of snapshots), and
B2 = 17.64 (receiver noise power level).

D AR

Computation of the eigenvalues for a simple block average SCM (Section 4.2.1) resulted in eight values
which appeared in the initial sorting sequence as 1442.2, 23.8, 20.2, 19.9, 18.0, 17.5, 16.4, and 15.7.

The coarse magnitude threshold C, is computed from the expression,

82 + l—f—] D.,] (39)

where D, is the average noise eigenvalue slope and « is a coarse magnitude threshold factor. The aver-
age noise eigenvalue slope can be readily determined from noise eigenvalue statistics as a function of

GAXRS - ATD

Co=(1+a)

s

3

ff:x] the number of snapshots averaged in the sample covariance matrix. A satisfactory approximation for
j Eq. (39) has been found to be ,

b - Bo_

5 A Do = 75 (40)
g which results in D, = 0.8 for our example. The value of @ must be chosen large enough to cover nor-
3 mal receiver noise statistical behavior, and 0.24 was found to be adequate. Substituting these values for
N our example results in a coarse magnitude threshold of C, = 25.9, which culls-out one principal eigen-
xj value from the initial sort. Note that 8¢ agrees closely with the approximation for the two closely
" spaced sources.

K+ 1]33. (41)

Bt = [[|p1|2+ 21

Figure 22 shows the remaining eigenvalues and the coarse magnitude threshold value. The reader
can verify that the average noise eigenvalue slope is very close to the value given in Eq. (40). The
number of eigenvalues greater than C, defines the initial value of our unique eigenvalue counter N, so
that we start with the initial count of N, = 1.

SIS

e
L ”

R

] . .. . . P .
::: Final culling is based on a sensitive magnitude threshold which is computed from a quadratic
curvefit predictor applied to the next largest eigenvalue. In Fig. 22, that next value is 23.8 (the second
;-._' eigenvalue), and we use the remaining six eigenvalues to evaluate the constants in a basic quadratic
o curvefit equation,

- Sf(x)=axt+ bx+ ¢ 42)
'j where x has an integer range of —5 to +5. A sliding window average is applied (when sufficient data
;«.j values are available) and the data are weighted in accordance with the taper,

R T(x) = — = @3
| 1+ (X

T 5

::: based on an 11-point window. The entire procedure is listed in the Appendix as a Fortran IV computer
o code.

W~

ol Solution of Eq. (42) results in the fitted curve shown in Fig. 22, and gives us the predicted value
E: of ﬁz = 21.5 in our example. The sensitive magnitude threshold consists of the inequality,

il if 82 -B8H > 20D,. (44)
A
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28T
| (1442.2)

o] _gSourse magnitude threshold

24' ®

predicted
-, A+ value

20+ fitted 'curvo-\ ° .
'
7

7

'
184 -eceviriinaiiis P P TR TR P PRSP R R R
. P noise power level

rd

»

EIGENVALUE MAGNITUDE

Isih P4

7’
¢

' n s N 3
v

8 7 6 5 4 3 2
INDEX NUMBER

"

Fig. 22 — Plot of eigenvalues vs eigenvalue
index for Case CS8L1J1T$G

This threshold is exceeded for the seccnd eigenvalue, such that our unique eigenvalue counter is

advanced to ‘N, = 2. Thus, we determine that there are two principal eigenvectors for our example
case CS8L1J1T¢G. ' ‘

4.6 Rootfinding on the Optimum Weights

The spatial direction location angles of sources may be estimated by applying the conventional
Fourier transform to evaluate zero locations of the optimum estimation weights, as illustrated in Fig. 4.
However, a Fourier transform is restricted to the Z-plane unit circle by definition [13], and may not
always provide adequate resolution of roots which migrate off the unit circle. A preferable method is
that of solving for the exact roots of the array polynomial. For our purposes, this involves application
of a rootfinding algorithm to the optimum estimation weights.

A listing of the Fortran IV computer code for the rootfinding algorithm used in this investigation
is given in the Appendix. This algorithm may be used to find the roots Z; of polynomials of the form
wy+ wiZ + wyZ2+ ...+ wgZK 1= 0 (45)

where the w, are complex array weight coefficients. The roots are found by expressing the polynomials
in terms of Siljak functions and by using the method of steepest descent to determine the zeros [34].
Once a root is found, the polynomial is reduced by synthetic division and the process is repeated. The
algorithm is very fast and robust.

Figure 23a illustrates an example of its application to Case C8L1J1T¢C, which consists of an 8-
element linear array with elements spaced half-wavelength, a 10 dB source located at —8°, and a weak
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(b) Digital relative power vs location angle

Fig. 23 — Spatial spectrum estimates for Case C8L1J1T¢C, derived from PEGS eigenanalysis
algorithm optimum weights, eight trials of 480 snapshots
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~11 dB source located at +6°. Simple block averaging was used to accumulate a sample covariance
matrix every 480 snapshots, and the PEGS algorithm was then applied to compute the optimum
weights. The overlaid plots for eight successive trials demonstrate the following points:

®  The strong 10 dB source is located accurately with very little variance.

® The weak —11 dB source shows appreciable variance in its location estimates, but note
that its associated roots remain close to the unit circle.

®  All remaining roots are well removed from the unit circle and may be disregarded, thus
indicating that only two sources are present.

The deviation of the radial magnitude of roots from the Z-plane unit circle may be used as a
coarse culling test to determine the number of sources present. A threshold value of 0.15 was selected
for use with the PEGS optimum weight roots; i.e.,

||z,| - 1| < 0.15. (46)

After culling the roots in accordance with this coarse threshold, the associated source location angles
are determined and used to construct the direction matrix V (Section 4.1). The ith root Z, has the
location angle 6,

Z, = exp (jw sin 6)) 47

and
vy = £.0) exp (o,x),
where
@; = 27 sin 6.

Knowing V, we can then solve for the source power matrix P as discussed in Section 4.4.2, Eqgs.
(31,32). Figure 23(b) illustrates a digital plot of resultant estimated relative power with respect to
receiver noise power level vs estimated source location angles for the eight successive trials. A power

level of —20 dB was selected for screening out "false alarms" which might get through the root culling,

so this figure represents the end result of a triple source-screening processing, and gives us the final
data:

Source Location Strength Correlation

(deg) (dB)
#1 -8 +10 0
#2 +6 -11 0
#3 0 0 0

4.7 Spatial Filter Weights

The target tracking concept shown in Fig. 2 permits great flexibility in updating the digital spatial
filter weights because they are not developed simply as a closed-loop feedback adaptive response func-
tion. They are developed primarily on the basis of a model of the interference environment which is
updated periodically via the estimated locations and relative power levels of sources which are logically
determined to be interference. In addition, they can be modified by other inputs; for example,

® the addition of synthetic sources to reduce distortion ambiguities as discussed in Section
3.2, or to counter certain types of time-modulated interference;
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® the option for "softened” spatial filtering as a trade-off to buy less tracking beam distor-
tion, as discussed in this section and also Section 4.8;

®  the option for time-modulated filter weights, including range-dependent control, to permit
response to time/range dependent situations; and

® the option for real-time "clean-up" adaptive filter weight perturbations. These are based
on feedback from the filter output residue signals, to permit fast response to interference
source situations which are changing too rapidly for the relatively long periodic updates
from the spectral estimation algorithms.

Therefore, let us begin by considering the construction of a full-aperture dimension estimated
covariance matrix based on the signal source data applied to the model used for Eq. (7) in Section 4.1
above. Furthermore, let us solve for its eigenvalues/eigenvectors so that we may examine the formal
cigenvalue/eigenvector spatial filter shown in Fig. 24. Here, we use a Q matrix beamformer to form
the set of orthonormal eigenvector beams,

E = Q'E. (48)

Next, let us introduce an attenuation A, for each beam output such that the attenuation is normalized
to receiver noise power 82; i.c.,

where B, is the square root of B2, and B8, is the square root of the kth eigenvalue. We use o as an
attenuation control parameter. When a = 1, the output power of each attenuated beam will be equal
to B2, because the eigenvector beam output power is equal to its associated eigenvalue. Upon using a
reverse beamformer to transform back to element space, we obtain the spatial filtered output residue

signal vector,
E; = Q*[4,8,]E
= Q*[4,8,]QE. (50)
Conventional beam weighting S* can then be applied to the filtered output residue to obtain the beam
output,
Y,=S*"E,. (51)

From Eq. (28) for the inverse of the covariance matrix, one can form an inverse which is normal-
ized to receiver noise power,

M= [gl5,R™!=Q E‘?Z' skIIQ": (52)
Bi
M = Ql4,5,1Q%if a = 2. (53)
Substituting the conjugate of Eq. (53) into Bq. (50), we may rewrite Eq. (51) in the form,
Y, = S*M-1*E (54)

and then use Eq. (25) to further express the filtered output residue in terms of the optimum adaptive
Wiener filter weight,

Y, = W!E. (55)

Thus, we have identical output from the optimum adaptive weights and the formal spatial filter of
Fig. 24 when a = 2.
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The above discussion suggests a value range for the attenuation control parameter of
1€a<2 (56)

It must be emphasized that values of a less than 2 produce nonoptimal filtering. This condition is
referred to herein as "softened” spatial filtering, because it reduces the spatial insertion loss below the
value that would be obtained from optimum adaptive Wiener filter weights. Such softened insertion
loss filtering is used as a trade-off option in the processing to buy less distortion of the target signals.
Resultant degradation in the overall SNR is generally acceptable for most tracking situations, and
readily reverted to optimal if needed.

The above discussion essentially presents two equivalent approaches for obtaining the spatial filter
weights from the constructed covariance matrix:

®  an cigenvalue/eigenvector solution and
®  a matrix inverse solution

Note that the constructed covariance matrix permits options such as adding synthetic sources or reduc-
ing or increasing source power levels. Furthermore, since it is Toeplitz, solutions may be simplified in
accordance with readily implemented schemes available in the literature. Other computational
economies may be brought to bear via direct use of the known array polynomial roots.

4.8 Tracking Beams and Distortion

The tracking beams used throughout this report are based on selecting an adjacent pair of orthog-
onal, uniform-illumination beams such as those generated by a Butler matrix beamformer transforma-
tion, illustrated in Fig. 25. For example, the transformation matrix B for a linear array with an even
number of equally spaced elements, will have individual matrix components of the form

r

1
by ™= TR exp [w,Xk + 2

2m
1 X 2k - K - l)l (57)

41

R

S R

[T T IR DU I R

»

TEYT T

PTrTY B oL Fray s

® -



2T T S . .

pr gt gy put i pul 95 8 A Rl ol San g B Gl R

A MRS P AL Y ST Y N R A A

CHERLN, 2 e

e v v -
-b‘.ull<.

he _Whv v pl ¥

TINEE YYD

"6 a AT A NEBK 10" s" s
)

L ' . L . . B
Aty _\‘.“.‘\‘.\.~.-\‘-‘.'-.‘.\\\‘.\.‘..\;\\.t_ L e R R N AL I T i R P Ve PR T

.......

WILLIAM F. GABRIEL

where

m = beam index (column),

k = element index (row),
X, = element aperture location from midpoint,
w, = 27 sin 6,,

K = number of elements, and

biyba; |bix
baybyn | b
baybz  bax (58)
B=|- |- "I
' | | |’
bxxlbnl leK
FYIPVTYT

BUTLER MATRIX BEAMFORMER

I K é & BEAMFORMER

OUTPUTS
3dB
HYBRID
)N A
BEAM BEAM
Fig. 25 — Block diagram of tracking beam formation
via Butler matrix beamformer

Thus, the beamformer output vector £ may be expressed as
E=BE (59)

where the colvmns of B are the individual beamsteering vector weights associated with each output
beam. We select beam number (X72) as our left beam of the pair, and angle 6, as its pointing direc-
tion. Note that the selection automatically determines the pointing directions of all other beams. Fig-
ure 26(a) illustrates the sin x/x patterns of the left and right tracking beams (No. 4 and 5) for an 8-
element linear array with half-wavelength spacing. The pointing direction relationship for these two
beams may be written in terms of the Z-plane unit circle circumference segment,

27" = 7 (sin 0,41y — sin @), (60)
and from this we can solve for the pointing direction of the right beam, the median boresight pointing

direction for the pair, and the median beamwidth.
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The familiar sum Z and difference A tracking beam outputs are then obtained from this adjacent
pair via the 3 dB hybrid junction shown in Fig. 25.

L= '%' [EHH'I + Em]

A= ‘2L [Em+l - Em] (61)
where
m=(K/2),

and where we note that the difference beam is in quadrature phase relationship to the sum beam.
Expressed in terms of equivalent element weights, the sum beam weight S and the difference beam
weight D may be written via Eqs. (58,59)

S = 3 (st + b,

D= % b,y — by, (62)

The uniform illumination vectors b, and b, ; result in cosine illuminations for S and D, which are
readily computed for the beams of Fig. 26(a) as,

0.098 —0.490
0.278 —0.416
0.416 —0.278
0.490 -0.098
0.416 0.278
0.278 0.416
0.098 0.490]

These illuminations are shown plotted in Fig. 26(b) for our 8-element linear array example.

Monopulse tracking [35] involves an angle estimate for each pulse (snapshot) containing the tar-
get, and it is computed from the ratio of A/X. From the cosine illumination beams of Fig. 26, note
that we can form the approximation,

v=I1=lls

L2
[] Cll cos Ctan[zl (64)
Bl

8 is the angle of the target from boresight,
B is the angle to the first null of the sum pattern, and
C is a constant which depends upon the particular illuminations.

where
)

For our example, C = 3.8° and B = 22.0°. Thus, given values of A/X from Eq. (61), we can solve for
the track angle estimates, 8/B, from Eq. (64).
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Next, let us address track estimate distortion. Whenever one performs spatial filtering as
described in Section 4.7, a distortion of received plane wavefronts occurs because the spatial insertion
loss generally varies as a function of sin 4. This is shown in Eq. (50) which relates the filter output
vector E; to the filter input vector E. The only condition under which E, can retain the same phase
slope as the input is when all of the 4, are equal. Such distortion can cause serious tracking errors
from conventional sum and difference tracking beams.

This problem was first addressed in the literature by Davis, Brennan, and Reed [3}, who proposed
an algorithm for estimating the angle of arrival, based on the outputs of adaptively distorted sum and
difference beams. They used approximations to the optimum angle estimator which permitted correc-
tion of distortion at the tracking beam boresight position, and they demonstrated good performance via
simulation for sidelobe and/or mainbeam interference.

The approach we take here is that we know our adaptive filter weights, so that we can compute
the resultant distortion error throughout the tracking beam region and use it directly for correction. In
Section 4.7 above, we showed that it makes no difference whether we apply our quiescent beam weights
to the spatially filtered signals, or the equivalent adaptive weights to the unfiltered signals. Thus, we
may apply the monopulse sum and difference weights of Egs. (62, 63) to the spatially filtered output
residue signal vector of Eqs. (50, 51, 54, 55) and obtain the equivalent forms,

L=SE, =~ E‘M-IS = E'W, (65)
and
A=D'E,= E‘M-'D = E'W,, (66)

where W, and W, are now the equivalent adapted (and distorted) sum and difference beam weights.
The distorted ratio A/X can be computed for any direction vector E, thus giving us the necessary dis-
tortion correction curve across the entire tracking angle region.

If there are no interference sources, then spatial insertion loss is zero, there is no distortion, and
we have the ideal linear track angle estimate case summarized in Fig. 27 for our 8-element array. Note
that Fig. 27(d) is a plot of track angle estimate § vs true target angle, as computed from A/L values
obtained from Fig. 26(b) and plugged into Eq. (64). Linearity is excellent over the tracking region of
+1 beamwidth. The abscissa scale in beamwidths is sized to correspond with the angle scale in
degrees; i.e., the 3 dB beamwidth of our 8-element array is about 15°.

5. CONCLUSIONS

Two closely related new technologies, spectral estimation techniques and adaptive array processing
techniques, have been applied to the radar systems problem area of tracking targets in the presence of
nearby interference sources. It appears that the combination of these technologies does indeed offer
some attractive possible solutions. This application area was addressed via an all-digital receive system
concept whereby adaptive spatial filter weights are periodically updated on the basis of source estimates,
and the filter output residue signals are then sifted for targets. Several simulation examples were
included te illustrate some of the processing step outputs, "softened" spatial filter insertion loss, track-
ing beam distortions, correction for wavefront distortions, and satisfactory tracking in the presence of
strong multiple interference sources located within a beamwidth of the target. Future plans include
further evaluation of performance characteristics via more stringent/realistic computer simulations plus
testing with experimental data.
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Fig. 27 -- Adaptive processing spatial filter functions related to tracking angle estimation
for the ideal case of no interference sources
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Appendix
FORTRAN 1V COMPUTER CODE LISTINGS

1. DETERMINATION OF NUMBER OF UNIQUE EIGENVALUES

C DETERMINATION OF NUMBER OF UNIGUE EIGENVALUES
C FIRST APPLY COARSE MAGNITUDE LIMIT
Jo=0® ;FLAG FOR L®
10-0 ;NOISE EIGENVALUE COUNTER
DO 74 Ne1i,NEO®
IF(EIG(N).GT.BL@)GO TO 74
LO=L0+1
74 CONTINUE
IF(MOD(IP®,2).EQ.Q0)GO TO 88
76 IF(LO.LT.2)G0 TO 88 ;SKIP DIFF. LOOPS
C NEXT DETERMINE DEVIATION FROM CURVEFIT
Jo=10-11 ;NUMBER OF CURVEFITS ALLOWED
IF(JQ.GT.0)GO TO 78
Jo=1
78 DO 86 J=1,J@
URITE(4)L0
50=0.0
DR2=2.90
DO 80 L=-5,4
N=LO-6+L+J
IF(N.LT.3)G0 TO 80
M=NEQ+1-N
XO=EIG(M)-2.0XEIG(M+1)+EIG(N+2)
DR2+=DR2+XOXTAO(L)
$0=50+TAG(L)
80 CONTINUE
DR2=DR2/59 ;AYERAGED VALUE OF 2ND DIFF.
IF(DR2.LT.-(0.32%DF0Q))DR2=-(0.324DFO) ;LIMIT NEG. DR2
IF(DR2.GT.+(0.16XDF@))DR2*+(Q.16XDFY) ;;LIMIT POS. DR2
DR1=0.0
$0-0.0
DO 82 Le-5,5 ;SLIDING WINDOW SAMPLING
N=LO-6+L+J
IF(N.LT.2)GO TO 82
MeNEO+1-N
XO=EIG(M)-EIG(M+1)

IF(X0.GT.(2.08DF0))X0=(2.0XDF@) ;THROW OUT LARGE DIFF.
DR1=DR1+(X0~-DREXFLOAT(L))XTAR(L)
§0+50+TAG(L) ;SUM OF TAPERS
82 CONTINUE
DR1=DR1/S@ 3AVERAGED VALUE OF 1ST DIFF.-
C COMPARE PREDICTED VALUE

) 76=0.0
: DO 84 Le-5,4

Y N=LO-6+L+J

£ IF(N.LT.1)G0 TO 84
I~ MeNEQ+1-N

e X@=FLOAT(L)

-
]

AB-ARB+EIG(M)-DR1XX0-(DR2/2.0)X(X0OXX2)
84 CONTINUE
AQ=AB/FLCAT(LO-1)

-

i@

0 GO=AB+DR1¥5.0+(DR2/2.0)325.0 ;PREDICT L=5

al K=NE@+J-10

! IF((EIG(K)-G@).GT.(2.0%DF@))10~1 ;EIGENVALUE TEST FLAG
oo URITE(4,12)10,DR2,DR1,A®,G0,EIG(K)

v 86 CONTINUC ;END OF J LOOP

.
. .' .- .l
PR

IF(10.EQ.0)G0 TO 88
Lo=Lo-1 ;REDUCE Lo
10-0 sRESET I0
GO TO 76
88 NU@=NEO-LO-MUO® ;UNIQUE EIGENVALUES

«

RO T 15
BAAOOOS ( }
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2. ROOTFINDING ROUTINE

c ROOT FINDING ROUTINE

600 DO 602 N=1,NRO

UTE(N)=CMPLX(999.999,999.999)

602 CONTINUE
NO=NRO® ;CURRENT ROOT INDEX
IF(NO.EQ.1)GO TO 644
Z2=CNPLX(0Q.1,1.0)
SFX(Q)eCMPLX(1.0,0.0)
SFX(1)=2
L8=0 ;;ITERATION COUNTER INDEX
C INSERT ESTIMATED ROOTS AT THIS POINT
IF(KRO.EQ.8)GO TO 612
IF(1Q9.GT.XDF)GO TO 612
AO=PIOXSIN(PIOXDFO(109)/180.0)
X=C0S(AO)
Y=SIN(AB)
Z=CMPLX(X,Y)
SFX(1)=2
109=1Q09+1
CONTINUE

610

612

I-0
GO TO 620 INITIAL COMPUTE F(2)
614 I-=1

ALF=CMPLX(0.0,0.0)
LO~LO+1 ;ADUANCE ITERATION COUNT
DO 616 K=1,N0
ALF=ALF+FLOAT (K )XCFE (K)SSFX(K~1)
CONTINUE
AG=CABS(ALF )x%2
DIF»-BETXCONJG(ALF)/A0
618 M=M+1
SFX(1)=Z+DIF

620 CONTINUE

C COMPUTE VALUE OF F(2)

AS=CABS(SFX(1))Xx22
B=2.0XREAL(SFX (1))
N2=N§-2
DO 624 K=0,N2
SFX(K+2)eBXSFX(K+1)-AQXSFX(K)
CONTINUE
BET=CMPLX(0.0,9.0)
D0 626 K=0,No
BET=BET+CFE(K)¥SFX(K)
CONTINUE
FO=CABS(BET)
IF(FO.LT.TL1)GO TO 649
IF(I1.EQ.0)GO TO 614
IF(F8.GE.GO)GO TO 630
IF (CABS(DIF).LT.TL2)GO TO 640
IF(LO.GT.ITO)GO TO 638
Z=SFX(1)
GO TO 614 ;NEXT ITERATION
IF(M.GT.20)GO TO 632
DIF=DIF/4.0
GO TO 618
632 LFi=1

GO TO 640

638 LF2=1
640 CONTINUE

C ROOT FOUND, STORE AND SUBTRACT IT OUT

UTE(N®)=SFX(1)}

ALF=CFE(N®)

CFE(NO)=CMPLX(0.0,0.0)

Z=S5FX(1)

Ni=NO-1

DO 642 J-0,N1

K=Ni-J

COP=CFE(K) 3;SAVE CFE(K)

CFE(K)=ALF+ZXCFE(K+1)

ALF=COP

616

624

626
sF(Z) NULL

630

WILLIAM F. GABRIEL

642 CONTINUE

NO=NO-1 ;REDUCE NO INDEX
IF(NO.NE.1)G0O TO €18 ;TEST FOR LAST ROOT

844 BET-CFE(1)

AG=CABS(BET X232
UTE(1)=~CFE(Q)XCONJG(BET) /A0
GO TO 25¢ ;RO0TS COMPLETED, RETURN TO IBN LOOP

. TEST

3ROOT TEST
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